Alignment of Language Models

Tanmoy Chakraborty
Associate Professor, |IT Delhi
https://tanmoychak.com/

https://tanmoychak.com/

Stages in LLM Training

* Pre-Training
* Pre-training with the ‘next-token-prediction’ objective (for decoder-only models)

 Data - Billions of tokens of unstructured text from the internet

* |Instruction Tuning

* Trains models to follow natural language instructions
* Data - Several thousand (Task/Instruction, Output) examples

* Reinforcement Learning/Alignment with Human Feedback
* Show the output(s) generated by models to humans/reward model
* Collect feedback in the form of preferences.
* Use these preferences to further improve the model

* Data - Several thousand (Task, instruction) pairs and a reward model/
preference model/human

Introduction to LLMs \) ; Tanmoy Chakraborty

Why Is Instruction Tuning Not Enough?

* Question: What’s the best way to lose weight quickly?

Reduce carb intake, increase fiber & You should stop eating entirely for a few
protein content, increase vigorous days
exercise

\ J |

1 !

Instruction tuning can make this happen | | But can’t prevent this from happening

Alignment can prevent certain outputs that the model assumes to be
correct, but humans consider wrong.

Content Credit: Instruction Tuning for Large Language Models: A Survey

Introduction to LLMs

Tanmoy Chakraborty

Reinforcement Learning

g can be a large language model

* s; canbethetokens of the input prompt/instruction along with previously generated output tokens
* a can be any output token generated by the LLM

* The policy captures the distribution over the output tokens given the prompt/instruction

Policy g (a|st)

St
I
[|
Previously
Prompt tokens generated
output tokens

Introduction to LLMs Tanmoy Chakraborty

Reinforcement Learning

* Eachtoken generated by the LLM can be thought of as an action

is | ag

Policy g (a|st)

LLM Policy g (a|s¢)

Takes action a;

—> [User: Where is Taj Mahal? Assistant{Taj Mahal]

Prompt tokens LLM generated tokens

\ J

The generation of a token by an LLM
Is equivalent to taking an action

Introduction to LLMs ‘ Tanmoy Chakraborty

Reinforcement Learning

Policy mg (al|s;)

A
Gives reward 1

State changes
from s; t0 S¢4q

—PL Environment }—

Introduction to LLMs

Takes action a;

In traditional RL settings, the environment is explicit
* Forinstance, the game simulator

In the case of LLMs interacting with user, environment is abstract
e Textinput, generated output & feedback

Reward is the feedback from a human-user or a reward model.

If < |endoftext| > has not been generated, you may not get any

reward.

The state change is simply the addition of the new output token

St
|

Previously
Prompt tokens generated
output tokens

|
St+1

Tanmoy Chakraborty

Reinforcement Learning

Policy g (a|st) Policy mg(a|s¢41) J Policy g (a|s¢42)
G J A A
ives reward , i
o ; t Takes action @, Gives reward 1344
Takes action a; tate changes State changes
from ¢ t0 S¢44 \ 4 from ;.41 t0 Sp4o

—PL Environment }— Environment }

- : : i
Introduction to LLMs P IN T . Ecsa Tanmoy Chakraborty

LLM as a Policy

Ao =Taj To = 0

LLM Policy g (a|sg)

[User: Where is Taj Mahal? Assistant%

\ J

! A
Introduction to LLMs Ly E—csa Tanmoy Chakraborty

LLM as a Policy

0

a,; = Mahal 71

LLM Policy g (a|s;)

[User: Where is Taj Mahal? Assistant{Taj]

\ J

Introduction to LLMs s Tanmoy Chakraborty

LLM as a Policy

LLM Policy g (a|s;)

[User: Where is Taj Mahal? Assistant{Taj Mahal]
\ J

Introduction to LLMs s Tanmoy Chakraborty

LLM as a Policy

T

LLM Policy g (a|s;)

[User: Where is Taj Mahal? Assistant{Taj Mahalis in Agra]
I |

Introduction to LLMs ‘ Tanmoy Chakraborty

Who/What is the Reward Model?

* We can ask humans to give thumbs up/down to generated outputs and treat them as
rewards.

* Challenges:
* Human feedback is costly & slow.
* Traditional RLHF (as we will see) requires constant feedback after every (few) updates to the model.

e Solution:
e Lets train another LLM to behave like the reward model.

Introduction to LLMs \ Tanmoy Chakraborty

LLM as a Reward Model

e Goal:

Instruction
/Task (x)

r(xy)

> Reward Model

Output (y)

* Desirable: r(x,y,) > r(x,y,) if y; is a better response than y,
* |[f“better” is decided by humans, this pipeline is referred to as RLHF
* If “better” is decided by Al, itis called RLAIF

Introduction to LLMs GaNPTEL it LLoS Tanmoy Chakraborty

Architecture of the Reward Model

reward

%& Initialized from scratch
layer

Transformer Encoder/Decoder J

éééééﬂ@@@

Introduction to LLMs { 1 \| FT [L ‘1:| :;_:_,,_“,‘,_,_:1___. Tanmoy Chakraborty

Training the Reward Model

The Bradley-Terry (BT) Preference Model - |

* Probability model over the outcome of pairwise comparisons.
* Suppose there are n entities y4, ..., V¥
* The model assigns them scores p4, ..., P,

* The probability that y; is preferred over y; is given by

/]P(jx? ‘:Bj) = _.E:-—

b *¥)
exlp (¥

e Ifp; > 0: /\? (‘ju \(\50 whete ¥ = LBS]DI

Pe—q, () terhs)

Introduction to LLMs ‘1:” Tanmoy Chakraborty

The Bradley-Terry Preference Model - |

* Giveninput x and any two outputs y; and y,
?(Y, 7 ‘ﬁ%]"q = enp (¥” ('“"-”D)
(oY) + e (19D
Y* caw b2 awy armtOYy Joon Ao

* Parameterization

G
v&(\va ‘h—\"q - Q-’LP({(*0)

T ep(H))+ 2l (%142)

Introduction to LLMs ‘:I E—cs% Tanmoy Chakraborty

Maximum Likelihood Estimation for BT Models

* Given training data of the form (x, y,, y_), find the reward function rg+(x, y) to maximize
the log-probability of the preferences

(s ,(“;\5*3_)) - ﬂOjPBL‘:’S*?S- \%¢)
= Le:g exp (Yo (19D N
erp(¥o(9D) + (e (9
= Loy exp (s (79) = VoG9
L o ep(relvd-Ye *9)
= Jleﬁ e (¥ (1) - % B9
Noximiae 3 0wRs all brdsrene ban in waining dele

Introduction to LLMs ‘1:” E—cs% Tanmoy Chakraborty

An Intuitive View

max > loga(rp(x,y,) — rp(x,.))

0
(x1y+1y—)€D

* Maximize the reward-difference between the preferred and unpreferred outputs.

Introduction to LLMs GNPTEL | : _ Tanmoy Chakraborty

Where Does the Data Come From?

* Prompts x

* Canbe sampled as a subset of instruction-tuning datasets.
* ChatGPT used prompts submitted by humans for GPT-3

* Outputs y
* Canbe generated from an instruction-tuned LLM that you wish to align.

* Canalso be sampled from other LLMs to increase diversity.

* Preferencesy, > y_
* Canbedirectly collected from humans (RLHF).
* Another LLM can be tuned to judge (RLAIF).

Introduction to LLMs (y P\! FT [E]]_ \ __“ Tanmoy Chakraborty

Publicly Available Preference Data

 Summarize From Feedback by OpenAl
* Prompts — Summarize the following document: <Document>
* Outputs — Generated by InstructGPT models
* Human-generated preferences

* Ultrafeedback
* Prompts — Diverse set of tasks
* Outputs — Generated by GPT family, LlaMa family, BARD, WizardLM, Alpaca, etc.
* GPT-4 generated preferences

Introduction to LLMs \ : _ Tanmoy Chakraborty

The Reward Maximization
Objective

The Objective

Given
» Base policy or reference policy ;.. ¢ (y|x)
* Often, aninstruction tuned LM that serves as the starting point of alighment
* Reward Modelr(x, y)
Aim
* Tofind a policy mg+(y|x)

* That generated outputs with high reward.
* That stay close to the reference policy.

Introduction to LLMs \ Tanmoy Chakraborty

Why Care About Closeness to 1o ¢?

Reward Models are not perfect.

* They have been trained to score only selected natural language outputs.
* Not the entire set of outputs for a given prompt

* The policy can hack the reward model — generate outputs with high reward but
meaningless

* Aninput can have multiple correct outputs (Write a poem?)
* Reward maximization can collapse the probability to 1 outputs
* Staying close to ;.. r can preserve diversity.

Introduction to LLMs

Tanmoy Chakraborty

Formulating the Objective — Reward Maximization

* What does it mean for a policy to have high reward?

Samples

The average of these

Prompt: : _ numbers needs to
Write a poem HeaEl be high

r(x,y)

Reward : —

X (WL*-D Aoudd be h?"-

E—' N 1\3@\’0

Introduction to LLMs ‘1:” E—cs% Tanmoy Chakraborty

Formulating the Objective — Closeness to 1y, ¢

* How do we capture closeness 10 ¢ ?

Policien Qe \)}w’b MNsbabukion g Re (9|)

’d—-\

KL, Q_KB (9\"0 l) Avey (9’\703 - &-3~ﬁ9(3\n) 1'(‘5(3\10

The average of these
numbers needs to
Reference be low
Prompt: } : —
Write apoem P0l|Cy

ﬂref()’lx)

Introduction to LLMs ‘1:” Tanmoy Chakraborty

Alignment of Language Models
(Contd.)

Tanmoy Chakraborty
Associate Professor, lIT Delhi
https://tanmoychak.com/

https://tanmoychak.com/

Combining the Objective: Regularized Reward
Maximization

e Maximize the reward

E-&B " ¥ (6) /\

* Minimize the KL divergence
lﬁf'ﬂgb\ﬂ } o\ l
7\ (&5*)\, g (914

* Add a scaling factor f & combine

Ag\OL)
E o \jw} o ij
9

Introduction to LLMs NPTE “::I et E Tanmoy Chakraborty

The Regularized Reward Maximization Objective

S r. — Blog mg(poem,|x)
i Trer (Poemy|x)
glog To@oemal) ||
) —
Prompt: Policy T[ref(poemzlx) — £<2
Write apoem g (y|x) : 0?%.

Reference

Model

o (/1) og o tPoCTInl)

08 Trer(poemy|x) —
Tyef [x)

Introduction to LLMs J _ “_ |: » ‘.: Tanmoy Chakraborty

Regularized Reward

g (y[x)
Eng(y|x) r(xy) = Blog nrzf(ylx) = Eﬂe()’|x)rs(x» y)
where 15(x,y) =r(x,y) = log;iifz”y'%

* 15(x,y) is the regularized reward

* Maximizing the regularized reward ensures
* High reward outputs as decided by the reward model
* QOutputs that have reasonable probability under the reference model

Introduction to LLMs (: P\! FT [E]]_ : __“ Tanmoy Chakraborty

How to maximize — The REINFORCE algorithm?

* Compute the gradient of the objective.
 Train using Adam/Adagrad optimization algorithms

VgEﬂe(ylx)rs(x,y) = v—eé‘ ’ﬂalaj‘fk\ Ysli.'j)

Sey W;.—-:QA
" i Qa‘fxe(ﬂj)’a ¥ (""E\)
yeY

Introduction to LLMs e LR E—cs'?] Tanmoy Chakraborty

Computing the Derivative

D Vomg (1) 7 (x,9)

yeY

* Exact computation of the gradient is intractable
* Qutput space is too large

* Can we approximate it using samples?
* To be able to do that, we need an expression of the form

Erg(yi)[-1=) mo(1) [..]

yeY
* How to transform the derivative to this desired form?

Introduction to LLMs G NPTEL ,.:'- __“ Tanmoy Chakraborty

The log-derivative trick

Vo logmg(y|x) = \ Jo 7o (9)%) =) v, %o (9t = Rylyh) \7010579[9)7‘)

Aglal) = it

Replacing it in the derivative, we get

S Ve (©1) ¥s (19D

wey = s
- ’69(‘5)’*) VGLDS'I\QH*)} s Tt
5
| Ys("‘\‘\) v& l°§ Ap (3]1):8

- E Y~ Ke(910) \—

Introduction to LLMs NPTEL ‘-: Tanmoy Chakraborty

Monte Carlo Approximation

Prompt:
Write apoem

Policy
mg(y]x)

Introduction to LLMs

Reward

Vg logmg (y|x)

rs e |x>}

/_\

rs(poem;)Vq logmg (poem, IX)}

Tanmoy Chakraborty

1s(poems)Vg logmg (poemnlx)} _

—_—

agelany

Expanding the Gradient

* Lety = (a4, ..., a;) be the tokens of y.

: < 1
B rs(x, y)V9 lOgT[e()ILX') = Y (,,,‘\j) Vo % \9319 (qk) St)

-
= why) S Y (5315("*\9*)
4£=)

Se=(* 5 9o, ...,°+.)

= Ti_ s (x,9) Vg leg™e e
4 =\

Introduction to LLMs { 1":::::::;;] F’T |E ﬂ_ ‘.‘:I Tanmoy Chakraborty

Expanding the Gradient

* Lety = (a4, ..., a;) be the tokens of y.

, p Si= 1,00’_,,)0
* 15(x,¥)Ve logmg(ylx) = vs(xy) V, % g Ry (ag) sg) se=(

=
= b)) SV, gt (oulsy)
4£=)

<)

For every token, you use
the same reward that is
calculated for the entire
sequence

5 '\'2. . (1,\53 ve lgs’)\s (Q-l—\s-t)
4 =\

Introduction to LLMs ‘ {I Tanmoy Chakraborty

Implementing REINFORCE

|

[Sum & backpropagate]
r=15(x,y) X
is the total reward of {
the complete output

rlogmg(Mahal|sq)

y

rlogmg(Taj|sg)

A

rlog mg (in|ss3)

rlog mg (eot|ss)

rlogmg(is|sy)

T

A

rlogmg(Agrals,)

T

LLM Policy g (a|s¢)

[User: Where is Taj Mahal? Assistant: I Taj

Mahal

IS

Introduction to LLMs

Tanmoy Chakraborty

Problems with REINFORCE

* The reward at token “Taj” depends on the tokens generated in the future

* If the model had generated “Taj Mahal is in Paris”

* The reward would be negative
* The probability of generating Taj would be decreased

* |[fthe model had generated “Taj Mahal is in Agra”

* The reward would be positive
* The probability of generating Taj would be increased

* This variance in the reward leads to unstable training.

* Toreduce variance —take the average reward over all likely sequences
(under the policy) that generate “Taj” for the first token.

* Thisis calledthe Q — function

Introduction to LLMs g Tanmoy Chakraborty

REINFORCE with Q-Functions

[Sum & backpropagate]
r=r(x,y) { A \
is the reward of '
the final output Q(sq, Mahal) log mg(Mahal|s,) Q(s3,in) log Ty (in|s3) Q(ss, eot) log g (90t|55)l
Q(so, Taj) log e (Taj|so) Q(s2,1s) log g (is|s2) Q(s4, Agra) logmg(Agra|s,)
LLM Policy g (a|s¢)
[User: Where is Taj Mahal? Assistant: I Taj Mahal is in Agra]

Doesn’t matter what gets generated in the future. The “reward” at token “Taj” is fixed.

Introduction to LLMs Tanmoy Chakraborty

REINFORCE with Q-Functions

[Sum & backpropagate]

r=r(x,y) { A \

is the reward of '

the final output Q(sq, Mahal) log mg(Mahal|s,) Q(s3,in) log Ty (in|s3) Q(ss, eot) log g (90t|55)l
Avg. reward of Q(so, Taj) log g (Taj|s,) Q(s2,1s) log g (is|s3) Q(s4, Agra) logmg(Agrals,)

all likely I T

sequences T
that start with

“Ta)” LLM Policy 7o (als,)
[User: Where is Taj Mahal? Assistant: I Taj Mahal is in Agra]

Doesn’t matter what gets generated in the future. The “reward” at token “Taj” is fixed.

Introduction to LLMs Tanmoy Chakraborty

Q-function & Value function

* The Q-function for a state-action pair is the average discounted cumulative reward

received at the state after taking taking the specified action. s = 08,950
§(sea)= v (80 1) ”"L"']S
o (Fean /e, o AUaT)g) \3’)-;(&:«& %Qd‘b'r.

* The discount factor y ensures that immediate rewards get higher weight.

* The Value function of a state is the average discounted cumulative reward received
after reaching the state.

k ~ r(su\,%\)*e“f\
\j (s) = E‘RB(Q&,%\... QHT\S&)\Y(&’Q&) '

Q(S,I.’l) — ?"(S,ﬂ.) + Tvt('ﬁ(gaﬂ‘))

Introduction to LLMs / E—csa Tanmoy Chakraborty

From Q-Function to Advantage Function

* For text generation using language models
St+1 = (S, at)
* Thatis, once you have generated the next token, the next state is determined completely.

* Hence, the Q-function for a state-action pair can be written as
Q(st,ar) =71(se,ar) + v V(se41)
* To further reduce variance, the advantage function A(s;, a;) is used instead of Q-function
A(se,ar) = Q(se,ar) — V(se)
=71(sp,ar) + v V(ser1) —VI(sy)

* |ntuitively, advantage function captures contribution of the action over
an average action at the same state.

Tanmoy Chakraborty

Introduction to LLMs

REINFORCE with Advantage Functions

[Sum & backpropagate]
K
[|

A(sq{,Mahal) log mg(Mahal|s;)| | A(s3,in) logmg(in|ss) A(ss, eot) logmg (eot|ss)

A 4

A(sg, Taj) log mg (Taj|so) A(sz, 1) 10{% mg(is|s2) A(s4, Agra) logmg(Agrals,)

T T

LLM Policy g (a|s¢)

[User: Where is Taj Mahal? Assistant: I Taj Mahal is in Agra]

Doesn’t matter what gets generated in the future. The “reward” at token “Taj” is fixed.

Introduction to LLMs \ Tanmoy Chakraborty

Implementing the Value Function

p(aolso)

V(so)
Linear
Linear Layer
laye

embedding(sg)]
3

p(ar|sT)

ST)
Linear
Linear Layer
laye

v(
[

embedding(st)]

Transformer Decoder

1

BOOH o6 56 6

Introduction to LLMs (SNPTEL

Tanmoy Chakraborty

Learning the Value function

* Given aninput x, sample y = (a, ..., ar) from the policy g (y|x)

* Compute the cumulative discounted reward for each time-step
R, = Y (Se o) ~ Y‘Y(SH\,Q-L*\\ ¥ YEv (Swz, Qaa) +
RSy Rewed -0 -~90 =

* Minimize the mean-squared error

< V(s2) k\L
= Sx) — X
wg 24

I 4l

Introduction to LLMs

Tanmoy Chakraborty

Vanilla Policy Gradient

* Repeat until convergence
* Sample a batch of prompts B
For each prompt, sample one-or more outputs
Foreachoutputy = (a4, ..., ar)
* Compute the reward 1; at each token a;

¢ Compute cumulative discounted reward R for each token
» Compute the value & advantage function A; for each token

Apply few gradient updates using REINFORCE with the advantage values computed above
Apply few gradient updates to train the value function by minimizing the MSE.

Introduction to LLMs (: P\! FT [E]]_ e Tanmoy Chakraborty

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Problems

* Sampling from the policy after every update can be challenging.

» Solution: Sample from an older fixed policy instead i P
Ys (™) = 7 (9)%) ¥ (*9) % [Re (3)‘*)
E‘Ke(“ﬂﬂ R ZC o (9] k (R
e 181(‘9\"‘)
EAGN Ya (
et R —— < ’xl‘\)
Z Bk&h} Zogo|*)

[7‘9(")*\

E Ay n(9\-&) o 91)

Introduction to LLMs ‘.: Tanmoy Chakraborty

REINFORCE with Importance Weights

The term in the square brackets is kept constant during backpropagation. In Pytorch, this means using .detach() function

[Sum & backpropagate]
A
[|
ng(alsy) A X (alse) [ﬂe(alsT) A(sma)] log 74 (als)
So, @g) | 1o alsg) | e ’ 6

g, (alse) 010, G0/ | 05 FALEIS0 mg,(alsr) o !
{ LLM Policy g, (als¢) { LLM Policy g (a|s¢)
(e, [@t o n e) (e, | Wt & 0 e]

Introduction to LLMs (: P\! FT [E]]_ e Tanmoy Chakraborty

Proximal Policy Optimization

* Keeping the batch of prompts & outputs fixed, how much can we update the policy?

* |[f we update too much, the importance weights can change drastically.
 PPO-CLIP

Tlg (at|5t)
7Tk(at|5t)

* This ensures that the no matter how many updates are done to 7y, it stays close to g,

(1—-¢) <

<(1+¢)

Introduction to LLMs G NPTEL ,.:'- __“ Tanmoy Chakraborty

PPO-CLIP

mg(aclse)
ﬂet(at|5t) =(1+e)

To achieve above, maximize the following

(1—¢€) <

* When advantage is positive
mg(atlse)
T[Bk(atlst) ,

mg(aelse) >

ﬂek(at|5t)’

(1+€) | A(se ar)

mglx min (

* When advantage is negative

m@ax max (

Introduction to LLMs f1r ey Tanmoy Chakraborty

https://spinningup.openai.com/en/latest/algorithms/ppo.html

The PPO-CLIP Algorithm

e Fork=1toK

* Sample a batch of prompts B
For each prompt, sample one-or more outputs from gy, (y|x)

Foreachoutputy = (ay, ..., ar)

* Compute the reward r; at each token a;

* Compute cumulative discounted reward R; for each token

* Compute the value & advantage function A; for each token
Apply few gradient updates using REINFORCE PPO-CLIP with the advantage values computed above
Apply few gradient updates to train the value function by minimizing the MSE.

Introduction to LLMs (: P\! FT [E]]_ e Tanmoy Chakraborty

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Policy Gradient/PPQO for LLM Alighment

* Collect human preferences (x,y,,y_)
* Learn a reward model
¢* = argmax z logo(ry(x,y4) — 19 (x,¥-))
¢ (x,y+,y-)€ED

* Train the policy
6" = arggnaxEnemx)rqb*(x, y) — B-KL(mwo (Y2 ||Tre (y]x))

* Optionally

e Also learn the value function

Introduction to LLMs (x NPTEL ‘1:| Tanmoy Chakraborty

Things to Remember

* The log-derivative trick should be used to compute gradient in REINFORCE

* The log-probability of the tokens should be weighed by the advantage function to reduce
variance

* Importance weights should be used to allow sampling from a fixed policy

* The importance weights should be clipped to prevent large gradient updates.

Introduction to LLMs ,.:'- Tanmoy Chakraborty

	Default Section
	Slide 1: Alignment of Language Models
	Slide 2: Stages in LLM Training
	Slide 3: Why Is Instruction Tuning Not Enough?
	Slide 4: Reinforcement Learning
	Slide 5: Reinforcement Learning
	Slide 6: Reinforcement Learning
	Slide 7: Reinforcement Learning
	Slide 8: LLM as a Policy
	Slide 9: LLM as a Policy
	Slide 10: LLM as a Policy
	Slide 11: LLM as a Policy
	Slide 12: Who/What is the Reward Model?
	Slide 13: LLM as a Reward Model
	Slide 14: Architecture of the Reward Model
	Slide 15: Training the Reward Model
	Slide 16: The Bradley-Terry (BT) Preference Model - I
	Slide 17: The Bradley-Terry Preference Model - II
	Slide 18: Maximum Likelihood Estimation for BT Models
	Slide 19: An Intuitive View
	Slide 20: Where Does the Data Come From?
	Slide 21: Publicly Available Preference Data
	Slide 22: The Reward Maximization Objective
	Slide 23: The Objective
	Slide 24: Why Care About Closeness to pi sub r e f ?
	Slide 25: Formulating the Objective – Reward Maximization
	Slide 26: Formulating the Objective – Closeness to pi sub r e f
	Slide 27: Alignment of Language Models (Contd.)
	Slide 28: Combining the Objective: Regularized Reward Maximization
	Slide 31: The Regularized Reward Maximization Objective
	Slide 32: Regularized Reward
	Slide 33: How to Maximize – The REINFORCE Algorithm?
	Slide 34: Computing the Derivative
	Slide 35: The Log-Derivative Trick
	Slide 36: Monte Carlo Approximation
	Slide 37: Expanding the Gradient
	Slide 38: Expanding the Gradient
	Slide 39: Implementing REINFORCE
	Slide 40: Problems with REINFORCE
	Slide 41: REINFORCE with Q-Functions
	Slide 42: REINFORCE with Q-Functions
	Slide 43: Q-Function & Value Function
	Slide 44: From Q-Function to Advantage Function
	Slide 45: REINFORCE with Advantage Functions
	Slide 46: Implementing the Value Function
	Slide 47: Learning the Value Function
	Slide 48: Vanilla Policy Gradient
	Slide 49: Problems
	Slide 51: REINFORCE with Importance Weights
	Slide 52: Proximal Policy Optimization
	Slide 53: PPO-CLIP
	Slide 56: The PPO-CLIP Algorithm
	Slide 57: Policy Gradient/PPO for LLM Alignment
	Slide 58: Things to Remember

