Alignment of Language Models

Tanmoy Chakraborty
Associate Professor, |IT Delhi
https://tanmoychak.com/



https://tanmoychak.com/

Stages in LLM Training

* Pre-Training
* Pre-training with the ‘next-token-prediction’ objective (for decoder-only models)

 Data - Billions of tokens of unstructured text from the internet

* |Instruction Tuning

* Trains models to follow natural language instructions
* Data - Several thousand (Task/Instruction, Output) examples

* Reinforcement Learning/Alignment with Human Feedback
* Show the output(s) generated by models to humans/reward model
* Collect feedback in the form of preferences.
* Use these preferences to further improve the model

* Data - Several thousand (Task, instruction) pairs and a reward model/
preference model/human
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Why Is Instruction Tuning Not Enough?

* Question: What’s the best way to lose weight quickly?

Reduce carb intake, increase fiber & You should stop eating entirely for a few
protein content, increase vigorous days
exercise

\ J |

1 !

Instruction tuning can make this happen | | But can’t prevent this from happening

Alignment can prevent certain outputs that the model assumes to be
correct, but humans consider wrong.

Content Credit: Instruction Tuning for Large Language Models: A Survey
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Reinforcement Learning

g can be a large language model

* s; canbethetokens of the input prompt/instruction along with previously generated output tokens
* a can be any output token generated by the LLM

* The policy captures the distribution over the output tokens given the prompt/instruction

Policy g (a|st)

St
I
[ |
Previously
Prompt tokens generated
output tokens
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Reinforcement Learning

* Eachtoken generated by the LLM can be thought of as an action

is | ag

Policy g (a|st)

LLM Policy g (a|s¢)

Takes action a;

—> [ User: Where is Taj Mahal? Assistant{Taj Mahal ]

Prompt tokens LLM generated tokens

\ J

The generation of a token by an LLM
Is equivalent to taking an action
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Reinforcement Learning

Policy mg (al|s;)

A
Gives reward 1

State changes
from s; t0 S¢4q

—PL Environment }—

Introduction to LLMs

Takes action a;

In traditional RL settings, the environment is explicit
* Forinstance, the game simulator

In the case of LLMs interacting with user, environment is abstract
e Textinput, generated output & feedback

Reward is the feedback from a human-user or a reward model.

If < |endoftext| > has not been generated, you may not get any

reward.

The state change is simply the addition of the new output token

St
|

Previously
Prompt tokens generated
output tokens

|
St+1
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Reinforcement Learning

Policy g (a|st) Policy mg(a|s¢41) J Policy g (a|s¢42)
G J A A
ives reward , i
o ; t Takes action @, Gives reward 1344
Takes action a; tate changes State changes
from ¢ t0 S¢44 \ 4 from ;.41 t0 Sp4o

—PL Environment }— Environment }

- : : i
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LLM as a Policy

Ao =Taj To = 0

LLM Policy g (a|sg)

[ User: Where is Taj Mahal? Assistant%

\ J

! A
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LLM as a Policy

0

a,; = Mahal 71

LLM Policy g (a|s;)

[ User: Where is Taj Mahal? Assistant{Taj ]

\ J
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LLM as a Policy

LLM Policy g (a|s;)

[ User: Where is Taj Mahal? Assistant{Taj Mahal ]
\ J
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LLM as a Policy

T

LLM Policy g (a|s;)

[ User: Where is Taj Mahal? Assistant{Taj Mahalis in Agra ]
I |
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Who/What is the Reward Model?

* We can ask humans to give thumbs up/down to generated outputs and treat them as
rewards.

* Challenges:
* Human feedback is costly & slow.
* Traditional RLHF (as we will see) requires constant feedback after every (few) updates to the model.

e Solution:
e Lets train another LLM to behave like the reward model.
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LLM as a Reward Model

e Goal:

Instruction
/Task (x)

r(xy)

> Reward Model

Output (y)

* Desirable: r(x,y,) > r(x,y,) if y; is a better response than y,
* |[f“better” is decided by humans, this pipeline is referred to as RLHF
* If “better” is decided by Al, itis called RLAIF
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Architecture of the Reward Model

reward

%& Initialized from scratch
layer

Transformer Encoder/Decoder J

éééééﬂ@@@
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Training the Reward Model



The Bradley-Terry (BT) Preference Model - |

* Probability model over the outcome of pairwise comparisons.
* Suppose there are n entities y4, ..., V¥
* The model assigns them scores p4, ..., P,

* The probability that y; is preferred over y; is given by

/]P(jx? ‘:Bj) = _.E:-—

b *¥)
exlp (¥

e Ifp; > 0: /\? (‘ju \(\50 whete ¥ = LBS]DI

Pe—q, () terhs)
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The Bradley-Terry Preference Model - |

* Giveninput x and any two outputs y; and y,
?( Y, 7 ‘ﬁ%]"q = enp (¥” ('“"-”D)
(oY) + e (19D
Y* caw b2 awy armtOYy Joon Ao

* Parameterization

G
v&(\va ‘h—\"q - Q-’LP({( *0)

T ep(H ) )+ 2l (%142)
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Maximum Likelihood Estimation for BT Models

* Given training data of the form (x, y,, y_), find the reward function rg+(x, y) to maximize
the log-probability of the preferences

(s ,(“;\5*3_)) - ﬂOjPBL‘:’S*?S- \%¢)
= Le:g exp (Yo (19D N
erp(¥o(9D) + (e (9
= Loy exp (s (79) = VoG9
L o ep(relvd-Ye *9)
= Jleﬁ e (¥ (1) - % B9
Noximiae 3 0wRs all brdsrene  ban in  waining dele
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An Intuitive View

max > loga(rp(x,y,) — rp(x,.))

0
(x1y+1y—)€D

* Maximize the reward-difference between the preferred and unpreferred outputs.
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Where Does the Data Come From?

* Prompts x

* Canbe sampled as a subset of instruction-tuning datasets.
* ChatGPT used prompts submitted by humans for GPT-3

* Outputs y
* Canbe generated from an instruction-tuned LLM that you wish to align.

* Canalso be sampled from other LLMs to increase diversity.

* Preferencesy, > y_
* Canbedirectly collected from humans (RLHF).
* Another LLM can be tuned to judge (RLAIF).
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Publicly Available Preference Data

 Summarize From Feedback by OpenAl
* Prompts — Summarize the following document: <Document>
* Outputs — Generated by InstructGPT models
* Human-generated preferences

* Ultrafeedback
* Prompts — Diverse set of tasks
* Outputs — Generated by GPT family, LlaMa family, BARD, WizardLM, Alpaca, etc.
* GPT-4 generated preferences
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The Reward Maximization
Objective



The Objective

Given
» Base policy or reference policy ;.. ¢ (y|x)
* Often, aninstruction tuned LM that serves as the starting point of alighment
* Reward Modelr(x, y)
Aim
* Tofind a policy mg+(y|x)

* That generated outputs with high reward.
* That stay close to the reference policy.
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Why Care About Closeness to 1o ¢?

Reward Models are not perfect.

* They have been trained to score only selected natural language outputs.
* Not the entire set of outputs for a given prompt

* The policy can hack the reward model — generate outputs with high reward but
meaningless

* Aninput can have multiple correct outputs (Write a poem?)
* Reward maximization can collapse the probability to 1 outputs
* Staying close to ;.. r can preserve diversity.

Introduction to LLMs
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Formulating the Objective — Reward Maximization

* What does it mean for a policy to have high reward?

Samples

The average of these

Prompt: : _ numbers needs to
Write a poem HeaEl be high

r(x,y)

Reward : —

X (WL\*-D Aoudd  be h?"-

E—' N 1\3@\’0
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Formulating the Objective — Closeness to 1y, ¢

* How do we capture closeness 10 ¢ ?

Policien Qe \)}w’b MNsbabukion g Re (9|)

’d—-\

KL, Q_KB (9\"0 l) Avey (9’\703 - &-3~ﬁ9(3\n) 1'(‘5(3\10

The average of these
numbers needs to
Reference be low
Prompt: } : —
Write apoem P0l|Cy

ﬂref()’lx)
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Combining the Objective: Regularized Reward
Maximization

e Maximize the reward

E-&B " ¥ (6) /\

* Minimize the KL divergence
lﬁf'ﬂgb\ﬂ } o\ l
7\ (&5\*)\, g (914

* Add a scaling factor f & combine

Ag\OL)
E o \jw} o ij
9
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The Regularized Reward Maximization Objective

S r. — Blog mg(poem,|x)
i Trer (Poemy|x)
glog To@oemal) ||
) —
Prompt: Policy T[ref(poemzlx) — £<2
Write apoem g (y|x) : 0?%.

Reference

Model

o (/1) og o tPoCTInl)

08 Trer(poemy|x) —
Tyef [x)
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Regularized Reward

g (y[x)
Eng(y|x) r(xy) = Blog nrzf(ylx) = Eﬂe()’|x)rs(x» y)
where 15(x,y) =r(x,y) = log;iifz”y'%

* 15(x,y) is the regularized reward

* Maximizing the regularized reward ensures
* High reward outputs as decided by the reward model
* QOutputs that have reasonable probability under the reference model
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How to maximize — The REINFORCE algorithm?

* Compute the gradient of the objective.
 Train using Adam/Adagrad optimization algorithms

VgEﬂe(ylx)rs(x,y) = v—eé‘ ’ﬂalaj‘fk\ Ysli.'j)

Sey W;.—-:QA
" i Qa‘fxe(ﬂj)’a ¥ (""E\)
yeY
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Computing the Derivative

D Vomg (1) 7 (x,9)

yeY

* Exact computation of the gradient is intractable
* Qutput space is too large

* Can we approximate it using samples?
* To be able to do that, we need an expression of the form

Erg(yi)[-1= ) mo(1) [..]

yeY
* How to transform the derivative to this desired form?
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The log-derivative trick

Vo logmg(y|x) = \ Jo 7o (9)%) =) v, %o (9t = Rylyh) \7010579[9)7‘)

Aglal) = it

Replacing it in the derivative, we get

S Ve (©1) ¥s (19D

wey = s
- ’69(‘5)’*) VGLDS'I\QH\*)} s Tt
5
| Ys("‘\‘\) v& l°§ Ap (3]1):8

- E Y~ Ke(910) \—
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Monte Carlo Approximation

Prompt:
Write apoem

Policy
mg(y]x)

Introduction to LLMs

Reward

Vg logmg (y|x)

rs e |x>}

/_\

rs(poem;)Vq logmg (poem, IX)}
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Expanding the Gradient

* Lety = (a4, ..., a;) be the tokens of y.

: < 1
B rs(x, y)V9 lOgT[e()ILX') = Y (,,,‘\j) Vo % \9319 (qk) St)

-
= why) S Y (5315("*\9*)
4£=)

Se=(* 5 9o, ...,°+.)

= Ti_ s (x,9) Vg leg™e e
4 =\
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Expanding the Gradient

* Lety = (a4, ..., a;) be the tokens of y.

, p Si= 1,00’_,,)0
* 15(x,¥)Ve logmg(ylx) = vs(xy) V, % g Ry (ag) sg)  se=(

=
= b)) SV, gt (oulsy)
4£=)

<)

For every token, you use
the same reward that is
calculated for the entire
sequence

5 '\'2. . (1,\53 ve lgs’)\s (Q-l—\s-t)
4 =\
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Implementing REINFORCE

|

[ Sum & backpropagate ]
r=15(x,y) X
is the total reward of {
the complete output

rlogmg(Mahal|sq)

y

rlogmg(Taj|sg)

A

rlog mg (in|ss3)

rlog mg (eot|ss)

rlogmg(is|sy)

T

A

rlogmg(Agrals,)

T

LLM Policy g (a|s¢)

[ User: Where is Taj Mahal? Assistant: I Taj

Mahal

IS
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Problems with REINFORCE

* The reward at token “Taj” depends on the tokens generated in the future

* If the model had generated “Taj Mahal is in Paris”

* The reward would be negative
* The probability of generating Taj would be decreased

* |[fthe model had generated “Taj Mahal is in Agra”

* The reward would be positive
* The probability of generating Taj would be increased

* This variance in the reward leads to unstable training.

* Toreduce variance —take the average reward over all likely sequences
(under the policy) that generate “Taj” for the first token.

* Thisis calledthe Q — function
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REINFORCE with Q-Functions

[ Sum & backpropagate ]
r=r(x,y) { A \
is the reward of '
the final output Q(sq, Mahal) log mg(Mahal|s,) Q(s3,in) log Ty (in|s3) Q(ss, eot) log g (90t|55)l
Q(so, Taj) log e (Taj|so) Q(s2,1s) log g (is|s2) Q(s4, Agra) logmg(Agra|s,)
LLM Policy g (a|s¢)
[ User: Where is Taj Mahal? Assistant: I Taj Mahal is in Agra ]

Doesn’t matter what gets generated in the future. The “reward” at token “Taj” is fixed.
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REINFORCE with Q-Functions

[ Sum & backpropagate ]

r=r(x,y) { A \

is the reward of '

the final output Q(sq, Mahal) log mg(Mahal|s,) Q(s3,in) log Ty (in|s3) Q(ss, eot) log g (90t|55)l
Avg. reward of Q(so, Taj) log g (Taj|s,) Q(s2,1s) log g (is|s3) Q(s4, Agra) logmg(Agrals,)

all likely I T

sequences T
that start with

“Ta)” LLM Policy 7o (als,)
[ User: Where is Taj Mahal? Assistant: I Taj Mahal is in Agra ]

Doesn’t matter what gets generated in the future. The “reward” at token “Taj” is fixed.
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Q-function & Value function

* The Q-function for a state-action pair is the average discounted cumulative reward

received at the state after taking taking the specified action. s = 08,950
§(sea)= v (80 1) ”"L"']S
*o ( Fean /e, o AUaT )g*) \3’)-;(&:«& %Qd‘b'r.

* The discount factor y ensures that immediate rewards get higher weight.

* The Value function of a state is the average discounted cumulative reward received
after reaching the state.

k ~ r(su\,%\)*e“f\
\j (s) = E‘RB(Q&,%\... QHT\S&)\Y(&’Q&) '

Q(S,I.’l) — ?"(S,ﬂ.) + Tvt('ﬁ(gaﬂ‘))
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From Q-Function to Advantage Function

* For text generation using language models
St+1 = (S, at)
* Thatis, once you have generated the next token, the next state is determined completely.

* Hence, the Q-function for a state-action pair can be written as
Q(st,ar) =71(se,ar) + v V(se41)
* To further reduce variance, the advantage function A(s;, a;) is used instead of Q-function
A(se,ar) = Q(se,ar) — V(se)
=71(sp,ar) + v V(ser1) —VI(sy)

* |ntuitively, advantage function captures contribution of the action over
an average action at the same state.

Tanmoy Chakraborty
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REINFORCE with Advantage Functions

[ Sum & backpropagate ]
K
[ |

A(sq{,Mahal) log mg(Mahal|s;)| | A(s3,in) logmg(in|ss) A(ss, eot) logmg (eot|ss)

A 4

A(sg, Taj) log mg (Taj|so) A(sz, 1) 10{% mg(is|s2) A(s4, Agra) logmg(Agrals,)

T T

LLM Policy g (a|s¢)

[ User: Where is Taj Mahal? Assistant: I Taj Mahal is in Agra ]

Doesn’t matter what gets generated in the future. The “reward” at token “Taj” is fixed.
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Implementing the Value Function

p(aolso)

V(so)
Linear
Linear Layer
laye

embedding(sg) ]
3

p(ar|sT)

ST)
Linear
Linear Layer
laye

v(
[

embedding(st) ]

Transformer Decoder

1

BOOH o6 56 6
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Learning the Value function

* Given aninput x, sample y = (a, ..., ar) from the policy g (y|x)

* Compute the cumulative discounted reward for each time-step
R, = Y (Se o) ~ Y‘Y(SH\,Q-L*\\ ¥ YEv (Swz, Qaa) +
RSy Rewed -0 -~90 =

* Minimize the mean-squared error

< V(s2) k\L
= Sx ) — X
wg 24

I 4l
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Vanilla Policy Gradient

* Repeat until convergence
* Sample a batch of prompts B
For each prompt, sample one-or more outputs
Foreachoutputy = (a4, ..., ar)
* Compute the reward 1; at each token a;

¢ Compute cumulative discounted reward R for each token
» Compute the value & advantage function A; for each token

Apply few gradient updates using REINFORCE with the advantage values computed above
Apply few gradient updates to train the value function by minimizing the MSE.
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https://spinningup.openai.com/en/latest/algorithms/ppo.html

Problems

* Sampling from the policy after every update can be challenging.

» Solution: Sample from an older fixed policy instead i P
Ys (™ ) = 7 (9)%) ¥ (*9) % [ Re (3)‘*)
E‘Ke(“ﬂﬂ R ZC o (9] k ( R
e 181(‘9\"‘)
EAGN Ya (
et R —— < ’xl‘\)
Z Bk&h} Zogo|*)

[ 7‘9(")\*\

E Ay n( 9\-&) o 91)
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REINFORCE with Importance Weights

The term in the square brackets is kept constant during backpropagation. In Pytorch, this means using .detach() function

[ Sum & backpropagate ]
A
[ |
ng(alsy) A X (alse) [ﬂe(alsT) A(sma )] log 74 (als)
So, @g) | 1o alsg) | e ’ 6

g, (alse) 010, G0/ | 05 FALEIS0 mg,(alsr) o !
{ LLM Policy g, (als¢) { LLM Policy g (a|s¢)
(e, [ @t o n e ) (e, | Wt & 0 e ]
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Proximal Policy Optimization

* Keeping the batch of prompts & outputs fixed, how much can we update the policy?

* |[f we update too much, the importance weights can change drastically.
 PPO-CLIP

Tlg (at|5t)
7Tk(at|5t)

* This ensures that the no matter how many updates are done to 7y, it stays close to g,

(1—-¢) <

<(1+¢)
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PPO-CLIP

mg(aclse)
ﬂet(at|5t) =(1+e)

To achieve above, maximize the following

(1—¢€) <

* When advantage is positive
mg(atlse)
T[Bk(atlst) ,

mg(aelse) >

ﬂek(at|5t)’

(1+€) | A(se ar)

mglx min (

* When advantage is negative

m@ax max (

Introduction to LLMs f1r ey Tanmoy Chakraborty


https://spinningup.openai.com/en/latest/algorithms/ppo.html

The PPO-CLIP Algorithm

e Fork=1toK

* Sample a batch of prompts B
For each prompt, sample one-or more outputs from gy, (y|x)

Foreachoutputy = (ay, ..., ar)

* Compute the reward r; at each token a;

* Compute cumulative discounted reward R; for each token

* Compute the value & advantage function A; for each token
Apply few gradient updates using REINFORCE PPO-CLIP with the advantage values computed above
Apply few gradient updates to train the value function by minimizing the MSE.
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https://spinningup.openai.com/en/latest/algorithms/ppo.html

Policy Gradient/PPQO for LLM Alighment

* Collect human preferences (x,y,,y_)
* Learn a reward model
¢* = argmax z logo(ry(x,y4) — 19 (x,¥-))
¢ (x,y+,y-)€ED

* Train the policy
6" = arggnaxEnemx)rqb*(x, y) — B-KL(mwo (Y2 ||Tre (y]x))

* Optionally

e Also learn the value function
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Things to Remember

* The log-derivative trick should be used to compute gradient in REINFORCE

* The log-probability of the tokens should be weighed by the advantage function to reduce
variance

* Importance weights should be used to allow sampling from a fixed policy

* The importance weights should be clipped to prevent large gradient updates.
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