
Alignment of Language Models
Tanmoy Chakraborty

Associate Professor, IIT Delhi
https://tanmoychak.com/

https://tanmoychak.com/

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Stages in LLM Training
• Pre-Training

• Pre-training with the ‘next-token-prediction’ objective (for decoder-only models)
• Data – Billions of tokens of unstructured text from the internet

• Instruction Tuning
• Trains models to follow natural language instructions
• Data – Several thousand (Task/Instruction, Output) examples

• Reinforcement Learning/Alignment with Human Feedback
• Show the output(s) generated by models to humans/reward model
• Collect feedback in the form of preferences.
• Use these preferences to further improve the model
• Data – Several thousand (Task, instruction) pairs and a reward model/

preference model/human

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Why Is Instruction Tuning Not Enough?

Content Credit: Instruction Tuning for Large Language Models: A Survey

• Question: What’s the best way to lose weight quickly?

What to say? What not to say?

Reduce carb intake, increase fiber &
protein content, increase vigorous
exercise

You should stop eating entirely for a few
days

Instruction tuning can make this happen But can’t prevent this from happening

Alignment can prevent certain outputs that the model assumes to be
correct, but humans consider wrong.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Reinforcement Learning

Policy 𝜋𝜃(𝑎|𝑠𝑡) • 𝜋𝜃 can be a large language model
• 𝑠𝑡 can be the tokens of the input prompt/instruction along with previously generated output tokens
• 𝑎 can be any output token generated by the LLM
• The policy captures the distribution over the output tokens given the prompt/instruction

Prompt tokens
Previously
generated

output tokens

𝑠𝑡

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Reinforcement Learning

Policy 𝜋𝜃(𝑎|𝑠𝑡)

Takes action 𝑎𝑡

• Each token generated by the LLM can be thought of as an action

LLM Policy 𝜋𝜃(𝑎|𝑠𝑡)

User: Where is Taj Mahal? Assistant: Taj Mahal

Prompt tokens LLM generated tokens

is

𝑠𝑡

𝑎𝑡

The generation of a token by an LLM
is equivalent to taking an action

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Reinforcement Learning

Environment

Policy 𝜋𝜃(𝑎|𝑠𝑡)

Takes action 𝑎𝑡

Gives reward 𝑟𝑡

State changes
from 𝑠𝑡 to 𝑠𝑡+1

• In traditional RL settings, the environment is explicit
• For instance, the game simulator

• In the case of LLMs interacting with user, environment is abstract
• Text input, generated output & feedback

• Reward is the feedback from a human-user or a reward model.
• If < |𝑒𝑛𝑑𝑜𝑓𝑡𝑒𝑥𝑡| > has not been generated, you may not get any

reward.
• The state change is simply the addition of the new output token

Prompt tokens
Previously
generated

output tokens

New
output
token

𝑠𝑡

𝑠𝑡+1

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Reinforcement Learning

Environment

Policy 𝜋𝜃(𝑎|𝑠𝑡)

Takes action 𝑎𝑡

Gives reward 𝑟𝑡

State changes
from 𝑠𝑡 to 𝑠𝑡+1

Policy 𝜋𝜃(𝑎|𝑠𝑡+1)

Environment

Policy 𝜋𝜃(𝑎|𝑠𝑡+2)

Takes action 𝑎𝑡+1
Gives reward 𝑟𝑡+1

State changes
from 𝑠𝑡+1 to 𝑠𝑡+2

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

LLM as a Policy

LLM Policy 𝜋𝜃(𝑎|𝑠0)

User: Where is Taj Mahal? Assistant:

𝑠0

𝑎0 =Taj 𝑟0 = 0

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

LLM as a Policy

LLM Policy 𝜋𝜃(𝑎|𝑠𝑡)

User: Where is Taj Mahal? Assistant: Taj

𝑠1

𝑎1 = Mahal 𝑟1 = 0

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

LLM as a Policy

LLM Policy 𝜋𝜃(𝑎|𝑠𝑡)

User: Where is Taj Mahal? Assistant: Taj Mahal

𝑠2

𝑎2 = is 𝑟2 = 0

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

LLM as a Policy

LLM Policy 𝜋𝜃(𝑎|𝑠𝑡)

User: Where is Taj Mahal? Assistant: Taj Mahal is in Agra

𝑠𝑇

𝑎𝑇 =< EOS > 𝑟𝑇 = +1

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Who/What is the Reward Model?
• We can ask humans to give thumbs up/down to generated outputs and treat them as

rewards.
• Challenges:

• Human feedback is costly & slow.
• Traditional RLHF (as we will see) requires constant feedback after every (few) updates to the model.

• Solution:
• Lets train another LLM to behave like the reward model.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

LLM as a Reward Model
• Goal:

Reward Model

Instruction
/Task (𝑥)

Output (y)

𝑟(𝑥, 𝑦)

• Desirable: 𝑟 𝑥, 𝑦1 > 𝑟(𝑥, 𝑦2) if 𝑦1 is a better response than 𝑦2

• If “better” is decided by humans, this pipeline is referred to as RLHF
• If “better” is decided by AI, it is called RLAIF

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Architecture of the Reward Model

Transformer Encoder/Decoder

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑦3 𝑦4

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 𝑒8 𝑒9

𝑒𝑎𝑣𝑔

Linear
layer

reward

Initialized from scratch

Training the Reward Model

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

The Bradley-Terry (BT) Preference Model - I
• Probability model over the outcome of pairwise comparisons.
• Suppose there are 𝑛 entities 𝑦1, … , yn

• The model assigns them scores 𝑝1, … , 𝑝𝑛

• The probability that 𝑦𝑖 is preferred over 𝑦𝑗 is given by

• If 𝑝𝑖 > 0:

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

The Bradley-Terry Preference Model - II
• Given input 𝑥 and any two outputs 𝑦1 and 𝑦2

• Parameterization

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Maximum Likelihood Estimation for BT Models
• Given training data of the form 𝑥, 𝑦+, 𝑦− , find the reward function 𝑟𝜃∗(𝑥, 𝑦) to maximize

the log-probability of the preferences

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

An Intuitive View

max
𝜃

𝑥,𝑦+,𝑦− ∈𝐷

log 𝜎(𝑟𝜃 𝑥, 𝑦+ − 𝑟𝜃(𝑥, 𝑦−))

• Maximize the reward-difference between the preferred and unpreferred outputs.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Where Does the Data Come From?
• Prompts 𝑥

• Can be sampled as a subset of instruction-tuning datasets.
• ChatGPT used prompts submitted by humans for GPT-3

• Outputs 𝑦
• Can be generated from an instruction-tuned LLM that you wish to align.
• Can also be sampled from other LLMs to increase diversity.

• Preferences 𝑦+ > 𝑦−

• Can be directly collected from humans (RLHF).
• Another LLM can be tuned to judge (RLAIF).

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Publicly Available Preference Data
• Summarize From Feedback by OpenAI

• Prompts – Summarize the following document: <Document>
• Outputs – Generated by InstructGPT models
• Human-generated preferences

• Ultrafeedback
• Prompts – Diverse set of tasks
• Outputs – Generated by GPT family, LlaMa family, BARD, WizardLM, Alpaca, etc.
• GPT-4 generated preferences

The Reward Maximization
Objective

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

The Objective
Given

• Base policy or reference policy 𝜋𝑟𝑒𝑓 𝑦 𝑥
• Often, an instruction tuned LM that serves as the starting point of alignment

• Reward Model 𝑟(𝑥, 𝑦)

Aim
• To find a policy 𝜋𝜃∗(𝑦|𝑥)

• That generated outputs with high reward.
• That stay close to the reference policy.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Why Care About Closeness to 𝜋𝑟𝑒𝑓?
Reward Models are not perfect.
• They have been trained to score only selected natural language outputs.

• Not the entire set of outputs for a given prompt

• The policy can hack the reward model – generate outputs with high reward but
meaningless

• An input can have multiple correct outputs (Write a poem?)
• Reward maximization can collapse the probability to 1 outputs
• Staying close to 𝜋𝑟𝑒𝑓 can preserve diversity.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Formulating the Objective – Reward Maximization
• What does it mean for a policy to have high reward?

Policy
𝜋𝜃(𝑦|𝑥)

Prompt:
Write a poem

Poem 1

Poem 2

Poem n

Reward
Model
𝑟(𝑥, 𝑦)

𝑟𝑝𝑜𝑒𝑚1

𝑟𝑝𝑜𝑒𝑚2

𝑟𝑝𝑜𝑒𝑚𝑛

The average of these
numbers needs to
be high

Samples

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Formulating the Objective – Closeness to 𝜋𝑟𝑒𝑓

• How do we capture closeness to 𝜋𝑟𝑒𝑓?

Policy
𝜋𝜃(𝑦|𝑥)

Prompt:
Write a poem

Poem 1

Poem 2

Poem n

Reference
Policy

𝜋𝑟𝑒𝑓(𝑦|𝑥)

𝑘𝑙𝑟𝑝𝑜𝑒𝑚1

𝑘𝑙𝑟𝑝𝑜𝑒𝑚2

𝑘𝑙𝑟𝑝𝑜𝑒𝑚𝑛

The average of these
numbers needs to
be low

Alignment of Language Models
(Contd.)

Tanmoy Chakraborty
Associate Professor, IIT Delhi

https://tanmoychak.com/

https://tanmoychak.com/

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Combining the Objective: Regularized Reward
Maximization
• Maximize the reward

• Minimize the KL divergence

• Add a scaling factor 𝛽 & combine

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

The Regularized Reward Maximization Objective

Policy
𝜋𝜃(𝑦|𝑥)

Prompt:
Write a poem

Poem 1

Poem 2

Poem n Reference
Model

log
𝜋𝜃(𝑦|𝑥)

𝜋𝑟𝑒𝑓(𝑦|𝑥)

Reward
Model
𝑟(𝑥, 𝑦)

Average

𝑟1 − 𝛽 log
𝜋𝜃(𝑝𝑜𝑒𝑚1|𝑥)

𝜋𝑟𝑒𝑓(𝑝𝑜𝑒𝑚1|𝑥)

𝑟2 − 𝛽 log
𝜋𝜃(𝑝𝑜𝑒𝑚2|𝑥)

𝜋𝑟𝑒𝑓(𝑝𝑜𝑒𝑚2|𝑥)

.

.

.

𝑟𝑛 − 𝛽 log
𝜋𝜃(𝑝𝑜𝑒𝑚𝑛|𝑥)

𝜋𝑟𝑒𝑓(𝑝𝑜𝑒𝑚𝑛|𝑥)

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Regularized Reward

𝐸𝜋𝜃 𝑦 𝑥 𝑟 𝑥, 𝑦 − 𝛽 log
𝜋𝜃 𝑦 𝑥

𝜋𝑟𝑒𝑓 𝑦 𝑥
 ≡ 𝐸𝜋𝜃 𝑦 𝑥 𝑟𝑠 𝑥, 𝑦

𝑤ℎ𝑒𝑟𝑒 𝑟𝑠 𝑥, 𝑦 = 𝑟 𝑥, 𝑦 − 𝛽 log
𝜋𝜃 𝑦 𝑥

𝜋𝑟𝑒𝑓 𝑦 𝑥

• 𝑟𝑠(𝑥, 𝑦) is the regularized reward
• Maximizing the regularized reward ensures

• High reward outputs as decided by the reward model
• Outputs that have reasonable probability under the reference model

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

How to Maximize – The REINFORCE Algorithm?
• Compute the gradient of the objective.
• Train using Adam/Adagrad optimization algorithms

33

∇𝜃𝐸𝜋𝜃 𝑦 𝑥 𝑟𝑠 𝑥, 𝑦

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Computing the Derivative

𝑦∈𝑌

∇𝜃𝜋𝜃 𝑦 𝑥 𝑟𝑠(𝑥, 𝑦)

• Exact computation of the gradient is intractable
• Output space is too large

• Can we approximate it using samples?
• To be able to do that, we need an expression of the form

𝐸𝜋𝜃 𝑦 𝑥 … =

𝑦∈𝑌

𝜋𝜃 𝑦 𝑥 …

• How to transform the derivative to this desired form?

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

The Log-Derivative Trick
∇𝜃 log 𝜋𝜃(𝑦|𝑥) =

Replacing it in the derivative, we get

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Monte Carlo Approximation

Policy
𝜋𝜃(𝑦|𝑥)

Prompt:
Write a poem

Poem 1

Poem 2

Poem n

∇𝜃 log 𝜋𝜃(𝑦|𝑥)

Reward
Model

Average

𝑟𝑠(𝑝𝑜𝑒𝑚1)∇𝜃 log 𝜋𝜃(𝑝𝑜𝑒𝑚1|𝑥)

rs(𝑝𝑜𝑒𝑚2)∇𝜃 log 𝜋𝜃(𝑝𝑜𝑒𝑚2|𝑥)

𝑟𝑠(𝑝𝑜𝑒𝑚3)∇𝜃 log 𝜋𝜃(𝑝𝑜𝑒𝑚𝑛|𝑥)

.

.

.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Expanding the Gradient
• Let 𝑦 = 𝑎1, … , 𝑎𝑡 be the tokens of 𝑦.

• 𝑟𝑠 𝑥, 𝑦 ∇𝜃 log 𝜋𝜃 𝑦 𝑥 =

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Expanding the Gradient
• Let 𝑦 = 𝑎1, … , 𝑎𝑡 be the tokens of 𝑦.

• 𝑟𝑠 𝑥, 𝑦 ∇𝜃 log 𝜋𝜃 𝑦 𝑥 =

For every token, you use
the same reward that is
calculated for the entire
sequence

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

User: Where is Taj Mahal? Assistant:

Implementing REINFORCE

Taj Mahal is in Agra

LLM Policy 𝜋𝜃(𝑎|𝑠𝑡)

r log 𝜋𝜃(𝑇𝑎𝑗|𝑠0)

r log 𝜋𝜃(𝑀𝑎ℎ𝑎𝑙|𝑠1)

r log 𝜋𝜃(𝑖𝑠|𝑠2)

r log 𝜋𝜃(𝑒𝑜𝑡|𝑠5)
r log 𝜋𝜃(𝑖𝑛|𝑠3)

r log 𝜋𝜃(𝐴𝑔𝑟𝑎|𝑠4)

Sum & backpropagate
𝑟 = 𝑟𝑠(𝑥, 𝑦)
is the total reward of
the complete output

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Problems with REINFORCE
• The reward at token “Taj” depends on the tokens generated in the future
• If the model had generated “Taj Mahal is in Paris”

• The reward would be negative
• The probability of generating Taj would be decreased

• If the model had generated “Taj Mahal is in Agra”
• The reward would be positive
• The probability of generating Taj would be increased

• This variance in the reward leads to unstable training.
• To reduce variance – take the average reward over all likely sequences

(under the policy) that generate “Taj” for the first token.
• This is called the 𝑄 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

User: Where is Taj Mahal? Assistant:

REINFORCE with Q-Functions

Taj Mahal is in Agra

LLM Policy 𝜋𝜃(𝑎|𝑠𝑡)

Q(s0, Taj) log 𝜋𝜃(𝑇𝑎𝑗|𝑠0)

Q(s1, Mahal) log 𝜋𝜃(𝑀𝑎ℎ𝑎𝑙|𝑠1)

Q(s2, is) log 𝜋𝜃(𝑖𝑠|𝑠2)

Q(s5, eot) log 𝜋𝜃(𝑒𝑜𝑡|𝑠5)Q(s3, in) log 𝜋𝜃(𝑖𝑛|𝑠3)

Q(s4, Agra) log 𝜋𝜃(𝐴𝑔𝑟𝑎|𝑠4)

Sum & backpropagate

𝑟 = 𝑟(𝑥, 𝑦)
is the reward of
the final output

Doesn’t matter what gets generated in the future. The “reward” at token “Taj” is fixed.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

User: Where is Taj Mahal? Assistant:

REINFORCE with Q-Functions

Taj Mahal is in Agra

LLM Policy 𝜋𝜃(𝑎|𝑠𝑡)

Q(s0, Taj) log 𝜋𝜃(𝑇𝑎𝑗|𝑠0)

Q(s1, Mahal) log 𝜋𝜃(𝑀𝑎ℎ𝑎𝑙|𝑠1)

Q(s2, is) log 𝜋𝜃(𝑖𝑠|𝑠2)

Q(s5, eot) log 𝜋𝜃(𝑒𝑜𝑡|𝑠5)Q(s3, in) log 𝜋𝜃(𝑖𝑛|𝑠3)

Q(s4, Agra) log 𝜋𝜃(𝐴𝑔𝑟𝑎|𝑠4)

Sum & backpropagate

𝑟 = 𝑟(𝑥, 𝑦)
is the reward of
the final output

Doesn’t matter what gets generated in the future. The “reward” at token “Taj” is fixed.

Avg. reward of
all likely

sequences
that start with

“Taj”

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Q-Function & Value Function
• The Q-function for a state-action pair is the average discounted cumulative reward

received at the state after taking taking the specified action.

• The discount factor 𝜆 ensures that immediate rewards get higher weight.
• The Value function of a state is the average discounted cumulative reward received after

reaching the state.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

From Q-Function to Advantage Function
• For text generation using language models

𝑠𝑡+1 = (𝑠𝑡 , 𝑎𝑡)

• That is, once you have generated the next token, the next state is determined completely.
• Hence, the Q-function for a state-action pair can be written as

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾 𝑉(𝑠𝑡+1)

• To further reduce variance, the advantage function 𝐴(𝑠𝑡 , 𝑎𝑡) is used instead of Q-function
𝐴 𝑠𝑡 , 𝑎𝑡 = 𝑄 𝑠𝑡 , 𝑎𝑡 − 𝑉 𝑠𝑡
 = 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾 𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡

• Intuitively, advantage function captures contribution of the action over
an average action at the same state.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

User: Where is Taj Mahal? Assistant:

REINFORCE with Advantage Functions

Taj Mahal is in Agra

LLM Policy 𝜋𝜃(𝑎|𝑠𝑡)

A(s0, Taj) log 𝜋𝜃(𝑇𝑎𝑗|𝑠0)

A(s1, Mahal) log 𝜋𝜃(𝑀𝑎ℎ𝑎𝑙|𝑠1)

A(s2, is) log 𝜋𝜃(𝑖𝑠|𝑠2)

A(s5, eot) log 𝜋𝜃(𝑒𝑜𝑡|𝑠5)A(s3, in) log 𝜋𝜃(𝑖𝑛|𝑠3)

A(s4, Agra) log 𝜋𝜃(𝐴𝑔𝑟𝑎|𝑠4)

Sum & backpropagate

Doesn’t matter what gets generated in the future. The “reward” at token “Taj” is fixed.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Implementing the Value Function

Transformer Decoder

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑦3 𝑦4

𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑠0) 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑠𝑇)

Linear
layer

𝑉(𝑠0)

Linear
Layer

𝑝(𝑎0|𝑠0)

Linear
layer

𝑉(𝑠𝑇)

Linear
Layer

𝑝(𝑎𝑇|𝑠𝑇)

…….

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Learning the Value Function
• Given an input 𝑥, sample 𝑦 = (𝑎0, … , 𝑎𝑇) from the policy 𝜋𝜃(𝑦|𝑥)

• Compute the cumulative discounted reward for each time-step
𝑅𝑡 =

• Minimize the mean-squared error

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Vanilla Policy Gradient
• Repeat until convergence

• Sample a batch of prompts 𝐵
• For each prompt, sample one-or more outputs
• For each output 𝑦 = (𝑎1, … , 𝑎𝑇)

• Compute the reward 𝑟𝑡 at each token 𝑎𝑡

• Compute cumulative discounted reward 𝑅𝑡 for each token
• Compute the value & advantage function 𝐴𝑡 for each token

• Apply few gradient updates using REINFORCE with the advantage values computed above
• Apply few gradient updates to train the value function by minimizing the MSE.

Credit: https://spinningup.openai.com/en/latest/algorithms/ppo.html

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Problems
• Sampling from the policy after every update can be challenging.
• Solution: Sample from an older fixed policy instead

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

REINFORCE with Importance Weights

User: Where is Taj
Mahal? Assistant:

Taj Mahal is in Agra

LLM Policy 𝜋𝜃(𝑎|𝑠𝑡)

User: Where is Taj
Mahal? Assistant:

Taj Mahal is in Agra

LLM Policy 𝜋𝜃𝑘
(𝑎|𝑠𝑡)

𝜋𝜃 𝑎 𝑠𝑇

𝜋𝜃𝑘
𝑎 𝑠𝑇

𝐴0 𝑠𝑇, 𝑎𝑇 log 𝜋𝜃(𝑎|𝑠𝑇)
𝜋𝜃 𝑎 𝑠0

𝜋𝜃𝑘
𝑎 𝑠0

𝐴0 𝑠0, 𝑎0 log 𝜋𝜃(𝑎|𝑠0) …….

The term in the square brackets is kept constant during backpropagation. In Pytorch, this means using .detach() function

Sum & backpropagate

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Proximal Policy Optimization
• Keeping the batch of prompts & outputs fixed, how much can we update the policy?
• If we update too much, the importance weights can change drastically.
• PPO-CLIP

1 − 𝜖 ≤
𝜋𝜃 𝑎𝑡 𝑠𝑡

𝜋𝑘 𝑎𝑡 𝑠𝑡
≤ (1 + 𝜖)

• This ensures that the no matter how many updates are done to 𝜋𝜃, it stays close to 𝜋𝜃𝑡

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

PPO-CLIP

1 − 𝜖 ≤
𝜋𝜃 𝑎𝑡 𝑠𝑡

𝜋𝜃𝑡
𝑎𝑡 𝑠𝑡

≤ (1 + 𝜖)

To achieve above, maximize the following
• When advantage is positive

max
𝜃

min
𝜋𝜃 𝑎𝑡 𝑠𝑡

𝜋𝜃𝑘
𝑎𝑡 𝑠𝑡

, 1 + 𝜖 𝐴𝑡(𝑠𝑡 , 𝑎𝑡)

• When advantage is negative

max
𝜃

max
𝜋𝜃 𝑎𝑡 𝑠𝑡

𝜋𝜃𝑘
𝑎𝑡 𝑠𝑡

, 1 − 𝜖 𝐴𝑡(𝑠𝑡 , 𝑎𝑡)

Credit: https://spinningup.openai.com/en/latest/algorithms/ppo.html

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

The PPO-CLIP Algorithm
• For 𝑘 = 1 to 𝐾

• Sample a batch of prompts 𝐵
• For each prompt, sample one-or more outputs from 𝜋𝜃𝑘

(𝑦|𝑥)

• For each output 𝑦 = (𝑎1, … , 𝑎𝑇)

• Compute the reward 𝑟𝑡 at each token 𝑎𝑡

• Compute cumulative discounted reward 𝑅𝑡 for each token
• Compute the value & advantage function 𝐴𝑡 for each token

• Apply few gradient updates using REINFORCE PPO-CLIP with the advantage values computed above
• Apply few gradient updates to train the value function by minimizing the MSE.

Credit: https://spinningup.openai.com/en/latest/algorithms/ppo.html

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Policy Gradient/PPO for LLM Alignment
• Collect human preferences (𝑥, 𝑦+, 𝑦−)

• Learn a reward model

𝜙∗ = argmax
𝜙

𝑥,𝑦+,𝑦− ∈𝐷

log 𝜎(𝑟𝜙 𝑥, 𝑦+ − 𝑟𝜙 (𝑥, 𝑦−))

• Train the policy
𝜃∗ = argmax

𝜃
𝐸𝜋𝜃 𝑦 𝑥 𝑟𝜙∗ 𝑥, 𝑦 − 𝛽. 𝐾𝐿(𝜋𝜃 𝑦 𝑥 ||𝜋𝑟𝑒𝑓(𝑦|𝑥))

• Optionally
• Also learn the value function

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Things to Remember
• The log-derivative trick should be used to compute gradient in REINFORCE
• The log-probability of the tokens should be weighed by the advantage function to reduce

variance
• Importance weights should be used to allow sampling from a fixed policy
• The importance weights should be clipped to prevent large gradient updates.

	Default Section
	Slide 1: Alignment of Language Models
	Slide 2: Stages in LLM Training
	Slide 3: Why Is Instruction Tuning Not Enough?
	Slide 4: Reinforcement Learning
	Slide 5: Reinforcement Learning
	Slide 6: Reinforcement Learning
	Slide 7: Reinforcement Learning
	Slide 8: LLM as a Policy
	Slide 9: LLM as a Policy
	Slide 10: LLM as a Policy
	Slide 11: LLM as a Policy
	Slide 12: Who/What is the Reward Model?
	Slide 13: LLM as a Reward Model
	Slide 14: Architecture of the Reward Model
	Slide 15: Training the Reward Model
	Slide 16: The Bradley-Terry (BT) Preference Model - I
	Slide 17: The Bradley-Terry Preference Model - II
	Slide 18: Maximum Likelihood Estimation for BT Models
	Slide 19: An Intuitive View
	Slide 20: Where Does the Data Come From?
	Slide 21: Publicly Available Preference Data
	Slide 22: The Reward Maximization Objective
	Slide 23: The Objective
	Slide 24: Why Care About Closeness to pi sub r e f ?
	Slide 25: Formulating the Objective – Reward Maximization
	Slide 26: Formulating the Objective – Closeness to pi sub r e f
	Slide 27: Alignment of Language Models (Contd.)
	Slide 28: Combining the Objective: Regularized Reward Maximization
	Slide 31: The Regularized Reward Maximization Objective
	Slide 32: Regularized Reward
	Slide 33: How to Maximize – The REINFORCE Algorithm?
	Slide 34: Computing the Derivative
	Slide 35: The Log-Derivative Trick
	Slide 36: Monte Carlo Approximation
	Slide 37: Expanding the Gradient
	Slide 38: Expanding the Gradient
	Slide 39: Implementing REINFORCE
	Slide 40: Problems with REINFORCE
	Slide 41: REINFORCE with Q-Functions
	Slide 42: REINFORCE with Q-Functions
	Slide 43: Q-Function & Value Function
	Slide 44: From Q-Function to Advantage Function
	Slide 45: REINFORCE with Advantage Functions
	Slide 46: Implementing the Value Function
	Slide 47: Learning the Value Function
	Slide 48: Vanilla Policy Gradient
	Slide 49: Problems
	Slide 51: REINFORCE with Importance Weights
	Slide 52: Proximal Policy Optimization
	Slide 53: PPO-CLIP
	Slide 56: The PPO-CLIP Algorithm
	Slide 57: Policy Gradient/PPO for LLM Alignment
	Slide 58: Things to Remember

